
123

Thomas Merz

Web Publishing
with Acrobat/pdf

ISBN 3-540-63762-1 Springer-Verlag Berlin Heidelberg New York

This work consists of a printed book and a cd-rom packaged with the book, and is subject to
copyright. All rights are reserved, whether the whole or part of the material is concerned,
specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this
publication or parts thereof is permitted only under the provisions of the German Copyright Law
of September 9, 1965, in its current version, and permission for use must always be obtained
from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law.

Springer-Verlag or the author make no warranty of representation, either express or implied
with respect to this cd-rom or book, including their quality, merchantibility, or fitness for a
particular pupose. In no event will Springer-Verlag or the author be liable for direct, indirect,
special, incidental, or consequential damages arising out of the use or inability to use the
cd-rom or book, even if Springer-Verlag or the author have been advised of the possibility of
such damages.

© Springer-Verlag Berlin Heidelberg 1998
Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication
does not imply, even in the absence of specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

Typesetting: Camera ready by author
Cover design and illustrations: Alessio Leonardi, leonardi.wollein, Berlin
Translated from German by Richard Hunt, Tadcaster, UK, and the author
spin 10657710 Printed on acid-free paper 33/3142 – 5 4 3 2 1 0

Thomas Merz
Tal 40
80331 München
Germany

Title of the Original German Edition:
Mit Acrobat ins World Wide Web
© Thomas Merz Verlag 1997

CIP-Data applied for

Die Deutsche Bibliothek – cip-Einheitsaufnahme
Web Publishing with Acrobat, PDF / Thomas Merz. – Berlin ; Heidelberg ; New
York ; Barcelona ; Budapest ; Hong Kong ; London ; Milan ; Paris ; Santa Clara
; Singapore ; Tokyo : Springer.
Einheitssacht.: Mit Acrobat ins World: DM 69.00

Buch. – 1998
CD-ROM. – 1998

Thomas Merz
This is a sample chapter of my book "Web Publishing with Acrobat/PDF". The chapter is distributed with permission of the publisher Springer-Verlag. The pdfmark primer and possibly errata and updates can be found at the following URL:

http://www.ifconnection.de/~tm

Contents v

The Websurfer’s Point of View
1 HTML and PDF 2

1.1 What is HTML? 2
1.2 What is PDF? 4
1.3 Comparison of HTML and PDF 6

2 PDF in the Browser 9
2.1 Web Browsers and Acrobat 9
2.2 Optimized PDF and Page-at-a-Time Download 14
2.3 Using PDFs in the Browser 17
2.4 Conversion from HTML to PDF 19
2.5 Conversion from PDF to HTML 20

The Publisher’s Point of View
3 Planning PDF Documents 26

3.1 PDF or HTML? 26
3.2 PDF Hypertext Features 27

4 Creating PDF Files 35
4.1 Several Paths to PDF 35
4.2 Distiller Settings 39
4.3 Optimized PDF Files 46
4.4 Full Text Retrieval 48
4.5 Encrypting PDF Files 51
4.6 Acrobat Plugins 53
4.7 Testing PDF Files 55

5 PDF Support in Applications 57
5.1 PDF-savvy Applications 57
5.2 Adobe FrameMaker 59
5.3 Adobe PageMaker 65
5.4 QuarkXPress 67
5.5 Microsoft Word 68
5.6 TEX 70
5.7 Graphics Programs 71

vi Contents

6 pdfmark Primer 75
6.1 Overview 75
6.2 Preliminaries 77
6.3 Application-specific Embedding Tricks 86
6.4 Basic pdfmark Functions 89
6.5 Destinations and Actions 102
6.6 Additional Tips for Distilling 117

7 PDF Forms 119
7.1 Form Features 119
7.2 Form Fields 122
7.3 Tips on Creating Form Fields 126
7.4 PDF Forms on the World Wide Web 130
7.5 Personal Field Names (PFN) 133
7.6 Acrobat Forms 136

8 PDF in HTML Pages 145
8.1 Navigator and Internet Explorer 145
8.2 Embedding PDF in HTML 151
8.3 VBScript Programming for PDFs 156
8.4 Common HTML Code for all Browsers 160
8.5 HTML Authoring Tools 163
8.6 Navigation 168

The Webmaster’s Point of View
9 PDF on the Web Server 176

9.1 MIME Types and PDF Icons 176
9.2 The Byterange Protocol 179
9.3 PDF on SSL Servers 185

10 Form Data Processing 187
10.1 FDF and the FDF Toolkit 187
10.2 FDF and the CGI Interface 191
10.3 FDF and Active Server Pages 194
10.4 Software for PDF Forms 197

11 Full Text Retrieval and Search Engines 201
11.1 Motivation 201
11.2 Microsoft Index Server and PDF IFilter 203

Contents vii

11.3 The Highlight File Format 211

12 Dynamic PDF 213
12.1 Dynamic Web Pages 213
12.2 Dynamic PDF Generation 214
12.3 The PDFlib C Library 216

A Contents of the CD-ROM 225
B PDF-related Web Resources 227

Index 229

6 pdfmark Primer

6.1 Overview
This chapter is devoted to pdfmark programming. The pdfmark operator is

a PostScript extension which is only implemented in Acrobat Distiller (as

opposed to PostScript printers). Using this operator, many non.layout-relat-

ed features of a PDF file can be defined in the original document or in the

corresponding PostScript code. Why bother with pdfmarks since you can

implement these features in Acrobat Exchange? Contrary to adding hyper-

text features manually in Exchange, the pdfmark method has a big advan-

tage in that you don’t have to redo all links and other special effects when

document changes require generating a new PDF version. Instead, the hy-

pertext features are automatically generated when distilling the PostScript

file. It is very important to know that pdfmark instructions are processed in

Acrobat Distiller only, but not in PDF Writer.

PostScript programming basics are quite helpful when you’re working

with pdfmark. In this chapter, however, I’ll try to explain how to explore the

power of pdfmark applications without any programming experience. Al-

though this chapter is filled with lots of gory details – mostly stuffed into

tables – you should be able to deal with many applications by simply using

or adapting one of the examples. Unless to wish to make use of the more

advanced features or additional options, you can get by without looking

into the tables or the accompanying descriptions.

This chapter is based on Adobe’s pdfmark Reference Manual which can be

found on the Acrobat CD-ROM. However, many features and details can

only be understood by additionally delving into the Portable Document For-
mat Reference Manual (to be found on Adobe’s Web server). If you consider

yourself to be a serious Acrobat user, I definitely recommend reading (or at

least glancing over) these manuals. There you will find additional details

which I do not cover here.

This chapter isn’t meant to replace the Adobe manuals (in fact, it surely

can’t). Instead, I’ll try to tame the very technical contents by introducing

many directly usable examples and also present additional information

not documented in Adobe’s manuals. And there are lots of undocumented

features! While doing research for this chapter, I not only discovered un-

documented pdfmark instructions (e.g., for executing Acrobat menu func-

tions), but also PDF code generated by Acrobat software but not covered in

the reference manual (e.g., assigning an index file to a PDF document).

Looking at it the other way round, there are PDF features which are docu-

mented in the reference but which are nevertheless inaccessible with Acro-

bat software. The only way of using these features is by generating the re-
6.1 Overview 75

spective pdfmark operators (e.g., named destinations; these are link targets

labeled with a symbolic name, see Section 8.6). But you should take care

when using such features – undocumented features usually don’t warrant

any support by the manufacturer of the software.

So you ask yourself why an author or editor should bother with techni-

cal details such as pdfmark programming? You’re definitely on the right

track. In my not so humble opinion, pdfmark only serves as a temporary

kludge as long as application software is unable to generate the necessary

pdfmarks automatically. In Chapter 5 you can find an overview of the cur-

rent status of pdfmark support in several important application programs.

Table 6.1. Overview of all pdfmark functions described in this chapter
Page Function
90 Notes
90 Links
91 Bookmarks
92 Article threads
92 Named destinations
93 PostScript instructions
94 Page cropping
94 General document information
95 Viewer properties
96 Page transitions
97 Viewer preferences
98 Encapsulating graphics
100 Page open actions
100 Creating form fields
99 Attaching an index file
104 Linking to a page in the same document
105 Link to another PDF document
106 Launching another document or application
107 Linking to a named destination
107 Linking to a file on the WWW
108 Defining a document’s base URL
108 Inserting JavaScript instructions
110 Linking to an article
110 Playing sound and video files
112 Hiding and showing fields
112 Submitting a form to a URL
113 Resetting a form to its default values
113 Importing form data from a file
114 Executing menu items
76 Chapter 6: pdfmark Primer

Function overview. Using pdfmarks, you can define a wealth of Acrobat

features in the PostScript code. This chapter presents many functions along

with working examples and extensive explanations. To avoid your getting

lost in a plethora of samples, Table 6.1 gives an overview of all pdfmark fea-

tures covered in this chapter.

6.2 Preliminaries
Embedding pdfmarks in the PostScript code. Before delving into pdfmark

descriptions I’d like to present several means of including pdfmark state-

ments in a document’s PostScript code. The techniques covered in this

chapter do not relate to certain application software. Chapter 5 has already

covered automatic pdfmark generation in application programs; Section

6.3 talks about application-specific methods for embedding pdfmarks in

the PostScript stream.

As you can see in Figure 6.1, several components are involved in creating

the PostScript code. The exact number and kind of these components not

only varies with the operating system in use, but also with the kind of ap-

plication software.1 The location at which to embed pdfmarks in the Post-

Script generating chain depends on the scope of the feature to be realized

by pdfmarks. Consider the following examples:

> A URL link is expected to show up on a certain page only.

> Automatically attaching an index file may affect a certain file or several

files in a group.

> It may be desirable for all files created with a certain program to contain

document info fields with appropriate contents.

> The name of the creator (the person, not the program) may be inserted

in the document info fields of all generated files, independently of the

program used to create the file.

The following pages present important ways of embedding pdfmarks along

with some examples. The remaining sections of this chapter will explain in

more detail how these examples work. For now we will only consider how to

embed pdfmark statements. The embedding techniques presented here re-

quire varying degrees of experience on the user’s part.

Protecting your printout. I already mentioned the fact that the pdfmark

operator is only implemented in Acrobat Distiller and not in any type of

PostScript printer. For this reason, using pdfmarks implies getting Post-

Script errors when you try to distill and print the very same PostScript files

(which is normally the case). This problem can be solved with a couple of

PostScript statements which don’t have any effect in Distiller but cancel the

1. You can find much more information on these topics in my book “PostScript & Acrobat/PDF – Applica-
tions, Troubleshooting, and Cross-Platform Publishing” (Springer-Verlag 1997).
6.2 Preliminaries 77

pdfmark operator when printing the document. To achieve this effect I rec-

ommend placing the following line of PostScript code in front of any pdf-

mark operator, or – better still – in modified PostScript prolog:

/pdfmark where {pop} {userdict /pdfmark /cleartomark load put} ifelse

To achieve the protection it suffices to include these statements once at the

beginning of the PostScript code – this cancels all forthcoming pdfmarks

when printing the document.

Another source of error is related to older printers equipped with a Post-

Script Level 1 interpreter: pdfmark sequences often make use of the << and

>> operators which are only defined in Level 2. On Level 1 devices these two

operators give rise to a syntax error – even if you followed the above advice

and included the protection line! However, it’s not very difficult to deal

with this problem by adding a few more PostScript lines before using any

pdfmark statement:

/pdfmark where {pop} {userdict /pdfmark /cleartomark load put} ifelse

/languagelevel where {pop languagelevel}{1} ifelse

2 lt {

userdict (<<) cvn ([) cvn load put

userdict (>>) cvn (]) cvn load put

} if

Including pdfmarks in the native document. Often it is more convenient

to define pdfmark statements directly in your native DTP or word processor

document. This requires application software which is capable of embed-

ding user-defined PostScript code, or which at least offers some feature

which may be (mis-) used for this purpose. Obviously, it’s not sufficient to

write the pdfmark statements in the document’s text since the text is get-

ting printed instead of being interpreted as PostScript code.

Two samples of nice embedding features are FrameMaker’s PostScript

frames and Microsoft Word’s print fields. You may find similar functions in

other programs, although these functions originally may have served a

completely different purpose. According to the embedding technique, ad-

ditional information for use in pdfmarks may be available, e.g., the enclos-

ing text frame’s coordinates which may be used for defining a link rectan-

gle. You can find a more detailed explanation of embedding pdfmarks for

several programs in Section 6.3.

Startup directory of Acrobat Distiller. Before it processes a document’s

actual page descriptions, Acrobat Distiller interprets all files found in its

startup directory. This gives an easy way to activate or deactivate certain

features by simply moving the respective PostScript file in or out of the

startup directory. Note that startup files are only processed once at Distill-

er’s launch time. For this reason, they generally remain active during Dis-

tiller’s life time, independently of the number of files processed. Unfortu-
78 Chapter 6: pdfmark Primer

nately, this also means that the document-related pdfmark stuff doesn’t

work. An example that works in the startup directory is the canceling of

specific pdfmark variations as described on page 83.

To avoid confusion, I recommend displaying a descriptive message ac-

cording to the following pattern:

(Article threads deactivated!\n) print flush

Distiller’s startup
directory

PostScript prolog
of the driver

PostScript prolog
of the application

EPS files

Program specific
embedding tricks

Distiller

Note: Doesn’t work with
all kinds of pdfmarks

Difficult
on Mac or
Windows

E.g.,
Frame-
Maker

Works with
all programs

For example:
PostScript frames

in FrameMaker, print
fields in Word

Fig. 6.1.
Several components are involved in
generating the PostScript code. Some of
them can be used to integrate pdfmarks.
6.2 Preliminaries 79

This way you can easily see which startup files are active when launching

Distiller.

A note of warning: all files in Distiller’s startup directory are loaded in an

undocumented order. If you edit a file and your text editor leaves a backup

file in this directory, both files will be loaded. If the old file is loaded after

the new one, the old values will be used!

EPS files. Graphics files in the Encapsulated PostScript (EPS) format are

supported within all major text, DTP, and graphics applications. By defini-

tion, they provide a means of embedding PostScript code in the document.

EPS files therefore offer great opportunities for including pdfmark opera-

tors. Aside from being supported in all current programs, this method has

the additional advantage of very easy handling via a program’s “import” or

“place”. The disadvantage is an EPS file’s rather limited scope: EPS files don’t

act globally, but are restricted in operation to one particular page. In some

cases, however, it’s possible to bypass this restriction. Another complication

is that of the formal requirements for EPS files which have to be obeyed for

pdfmarks too. Since EPS files don’t know anything about their location on

the page they can’t use absolute coordinates within the page.

Sounds complicated? In many cases embedding pdfmarks in EPS is as

easy as using the following template and simply adjusting the contained

pdfmark operators:

%!PS-Adobe-3.0 EPSF-3.0

%%BoundingBox: 0 0 72 72

%%EndProlog

/pdfmark where {pop} {userdict /pdfmark /cleartomark load put} ifelse

[{ThisPage} << /Trans << /S /Dissolve >> >> /PUT pdfmark

%%EOF

This dummy EPS file defines a size of 72 ú 72 points (equalling 1 inch = 2.54

cm) within the “%%BoundingBox” comment. This is the EPS graphic’s size

in the document. The graphic can be arbitrarily positioned on the page.

Since the EPS doesn’t produce any printout, it doesn’t matter where it is

placed on the page. Generally, you can place it somewhere near the edge of

the page in order not to disturb the layout.

Note that the EPS sample above already includes the additional line of

PostScript code for eliminating PostScript errors when printing the docu-

ment.

You can further reduce the size of the graphic in order to make it appear

less prominent. The following line:

%%BoundingBox: 0 0 1 1

defines a size of 1 ú 1 points, making the graphic nearly disappear from the

screen. However, this small size makes it close to impossible to click the

graphic with the mouse if you want to move or delete it.
80 Chapter 6: pdfmark Primer

pdfmark operators relating to a rectangular area – for example links, notes,

or form fields – should use the BoundingBox’s coordinates as values in the

/Rect array. This simplifies changing the link’s size by simply changing the

size of the embedded EPS.

There is, however, a small glitch related to pdfmarks in EPS “graphics”:

you won’t be able to see any screen preview of the EPS. But what should a

hypertext function’s preview look like anyway?

PostScript prolog of operating system or application. The PostScript pro-

log is a set of PostScript procedures loaded ahead of the actual page descrip-

tions by the operating system, printer driver, or application program. The

prolog is required for successfully printing the document and may also be

modified to include pdfmark operators.

Firstly, you have to check whether the driver’s or program’s prolog is ac-

cessible at all or hidden deeply in the driver, only surfacing in the final Post-

Script output. Note some samples:

> In addition to the printer driver’s prolog, FrameMaker for Windows uses

another small prolog which can be found in the program’s init directory.

In Unix – which doesn’t have any system-wide printer drivers – Frame-

Maker uses the prolog in the file ps_prolog.

> As an optimization, some PostScript drivers allow generating the prolog

separately, and later create the print data without any prolog. The prolog

must of course be available when printing the document. For PDF con-

version, it may be possible to adjust the prolog.

When patching prolog files, note that pdfmark operators relate to all docu-

ments being distilled with the manipulated prolog. This is not always what

you want.

Windows NT separator pages. Windows NT offers a hook for including

custom instructions in the printer output stream. This feature is called sep-

arator pages because its most prominent use is to print exactly that: infor-

mative sheets between individual print jobs. In order to use separator pages

for pdfmarks, we have to adhere to the syntax of the separator pages inter-

preter – the contents of a separator file are not simply copied to the output

stream but may also contain certain variables. This means you have to in-

sert a couple of special characters into your pdfmark code before installing

it as a separator page.

As explained above, we include the printout protecting code (only to be

sure) and the familiar “%!PS-Adobe-3.0” line (because our code will be sent

ahead of all other PostScript instructions). For example, to define general

document information in a separator page, create a file named docinfo.sep

which contains the following lines:
6.2 Preliminaries 81

@

@L%!PS-Adobe-3.0

@L/pdfmark where {pop} {userdict /pdfmark /cleartomark load put} ifelse

@L[/Title (User Manual)

@L /Author (Michael Heinzel)

@L /Subject (Adjusting the electronics of MH-screen)

@L /Keywords (screen display MH-screen)

@L /Creator (DocMaker 1.0)

@L /ModDate (D:19980110205731)

@L/DOCINFO pdfmark

The “@” character in the first line defines the special character used in this

file, “@L” instructs the driver to include the entire line in the PostScript out-

put without changing it. To make use of this separator page, select “Start”,

“Settings”, “Printers”, right-click your PostScript printer driver, choose

“Properties”, and click the “General” tab. In this menu, click “Separator

Page...” and browse to locate the file defined above. (NT’s default separator

pages live in \winnt\system32*.sep.) The selected separator page is includ-

ed in your PostScript output as long as you don’t deselect it in the printer

driver settings.

Note that PostScript drivers for Hewlett-Packard printers include some

PJL code at the start of the output stream which does not contain PostScript.

In order to avoid problems with Distiller, I recommend selecting a non-HP

printer.

PPD files. Most current PostScript drivers are configured via PPD (Post-

Script printer description) files. The drivers read the PPD file in order to find

out a device’s features, and the PostScript code to activate these features.

Therefore, such drivers may be instructed to include pdfmarks via the PPD

file. Since a PPD may also configure the driver’s user interface, PPDs may be

used for constructing a convenient method for including pdfmarks. How-

ever, manipulating PPD files is an error-prone process which may result in

damaged PostScript output or the driver not working any more. For this

reason I only mention this method for specialists without exploring fur-

ther details.

Post-processing the PostScript code after generation. In some cases it’s

reasonable to completely generate the PostScript files and do some process-

ing afterwards. Automated text processing tools like Unix’s sed and awk or

the Perl programming language are quite useful for this task. Note that

most text processing tools can’t deal with binary data. For this reason, the

PostScript data have to be generated in ASCII format to allow post-pro-

cessing.

The method isn’t suited for all pdfmark applications and may require a

good deal of work for implementing it. As an example, let’s define an article

thread for which the columns (beads) have identical widths on each page.
82 Chapter 6: pdfmark Primer

This task may be achieved by inserting the following line at the beginning

of each page’s PostScript code:

[/Title (A) /Rect [100 100 500 700] /ARTICLE pdfmark

Since the pages in PostScript files are separated by “%%Page:” comments (at

least in DSC conforming PostScript files), it’s easy to accomplish this. The

following sed script implements the task on Unix systems (it requires the

“%%EndPageSetup” comment to be present):

/%%EndPageSetup/a\

[/Title (Main text) /Rect [100 100 500 800] /ARTICLE pdfmark

Canceling certain pdfmark operators. In some cases it may be useful to

cancel certain pdfmarks which are automatically generated by an applica-

tion, but which are not wanted. For example, FrameMaker (up to version

5.1.x) generates pdfmarks for bookmarks, links, and article threads. It’s im-

possible to selectively activate or deactivate these features – you get either

all or none. If you want to get rid of automatically generated article threads

without sacrificing links and bookmarks, you can use the following code to

cancel a single kind of pdfmarks (in this case the article feature):

/pdfmark where { pop

/_origpdfmark /pdfmark load def

/pdfmark {

dup /ARTICLE eq {

cleartomark

}{

_origpdfmark

} ifelse

} bind def

} if

Data types for pdfmarks. Since pdfmarks are part of the PostScript code

they share data types and syntax with the page description language. In or-

der to spare you reading PostScript programming books, I’ll try to briefly

explain the most important data types used in pdfmark instructions. You

can separate instructions with arbitrary numbers of spaces, tabs, or line-

end characters. Note that case is significant in PostScript and pdfmark pro-

gramming.

Concerning integers and floating point numbers there’s nothing more to

note except that they work as expected. Boolean values can take on the val-

ues “true” or “false”. An array is an arbitrary long collection of (possibly dif-

ferent) data types delimited by square brackets:

[/XYZ null null null]

A name (don’t confuse names with the strings presented below) is an iden-

tifier for a function or a parameter, always starting with a slash “/”. Names

can be up to 127 characters long (including the leading slash). Names
6.2 Preliminaries 83

mustn’t contain one of the characters %, (,), <, >, [,], {, }, /, or #. Neither must

they contain any special characters.

Strings are text in parentheses. Parentheses themselves, line-end charac-

ters, or backslashes inside strings must be “escaped” with a leading back-

slash:

(This is a string with two \(2\) parens.)

Strings have to obey a certain character set. Unlike the actual page contents,

PDF internally uses a fixed character set called PDFDocEncoding (see Figure

6.2) which is different from the Mac or Windows character sets. PDF book-

marks and notes use this character set. Therefore, strings used in pdfmark

instructions must also use PDFDocEncoding. Since this character set shares

many (though not all) character positions with the Windows character set,

you can use many Windows special characters within pdfmarks since their

Windows code equals their PDFDocEncoding code.

On the Mac, however, octal notation has to be used for special charac-

ters, i.e., the octal value of the character after a leading backslash. Here are

several examples:

 000 001 002 003 004 005 006 007 010 011 012 013 014 015 016 017

 020 021 022 023 024 025 026 027 030 031 032 033 034 035 036 037

 040 041 042 043 044 045 046 047 050 051 052 053 054 055 056 057

060 061 062 063 064 065 066 067 070 071 072 073 074 075 076 077

100 101 102 103 104 105 106 107 110 111 112 113 114 115 116 117

 120 121 122 123 124 125 126 127 130 131 132 133 134 135 136 137

 140 141 142 143 144 145 146 147 150 151 152 153 154 155 156 157

160 161 162 163 164 165 166 167 170 171 172 173 174 175 176 177

200 201 202 203 204 205 206 207 210 211 212 213 214 215 216 217

 220 221 222 223 224 225 226 227 230 231 232 233 234 235 236 237

 240 241 242 243 244 245 246 247 250 251 252 253 254 255 256 257

260 261 262 263 264 265 266 267 270 271 272 273 274 275 276 277

300 301 302 303 304 305 306 307 310 311 312 313 314 315 316 317

 320 321 322 323 324 325 326 327 330 331 332 333 334 335 336 337

 340 341 342 343 344 345 346 347 350 351 352 353 354 355 356 357

360 361 362 363 364 365 366 367 370 371 372 373 374 375 376 377

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1 H I J K L M N O

2 ! " # $ % & ' () * + , − . /

3 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

4 @ A B C D E F G H I J K L M N O

5 P Q R S T U V W X Y Z [\] ^ _

6 ` a b c d e f g h i j k l m n o

7 p q r s t u v w x y z { | } ~

8 • † ‡ … — – ƒ ⁄ ‹ › − ‰ „ “ ” ‘

9 ’ ‚ ™ fi fl Ł Œ Š Ÿ Ž ı ł œ š ž

A ¡ ¢ £ ¤ ¥ ¦ § ¨ © ª « ¬ ® ¯

B ° ± ² ³ ´ µ ¶ · ¸ ¹ º » ¼ ½ ¾ ¿

C À Á Â Ã Ä Å Æ Ç È É Ê Ë Ì Í Î Ï

D Ð Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û Ü Ý Þ ß

E à á â ã ä å æ ç è é ê ë ì í î ï

F ð ñ ò ó ô õ ö ÷ ø ù ú û ü ý þ ÿ

Fig. 6.2.
The PDFDocEncoding
character set for PDF

bookmarks and
notes also has to be

used in pdfmark
strings. The octal

codes are shown be-
low each character.
84 Chapter 6: pdfmark Primer

™=\222, ‰=\213, •=\200, «=\253, »=\273, ©=\251, ®=\256

You can determine the codes of other characters by looking at the table in

Figure 6.2. There, you can also find out whether a certain character is sup-

ported in PDFDocEncoding at all. For example, the French word “Télé-

gramme” as a PDF string looks like this:

(T\351l\351gramme)

Colors in pdfmarks are defined as RGB triples in an array. Translating to

plain talk, this means three numbers in the range 0 to 1 for the red, green,

and blue components. The following array defines 100 percent blue:

[0 0 1]

Dictionaries are data structures containing an arbitrary number of key/val-

ue pairs (note that /URI is used as a value in the first pair, and as a key in the

third pair):

<< /Subtype /URI /IsMap true /URI (http://www.ifconnection.de/~tm) >>

Dictionaries are delimited by two angle brackets (“less than” and “greater

than” characters – not to be confused with French quotes “«” and “»”) on ei-

ther side. Dictionaries may be nested, requiring the appropriate number of

angle brackets. The order of pairs in a dictionary isn’t significant. However,

the ordering key/value must be strictly obeyed for each pair.

Finally, comments may contain remarks on the sometimes otherwise in-

comprehensible pdfmark instructions. Comments are introduced with a

percent character and continue until the end of the line:

% The following code defines a bookmark:

[/Page 1

/View [/XYZ 44 730 1.0]

/Title (Start)

/OUT pdfmark

In order to keep track of your pdfmark tricks I recommend using comments

for all pdfmark instructions. Since all examples in this chapter are ex-

plained in the text, however, I will do without comments.

Coordinate system. Many pdfmark instructions involve geometrical coor-

dinates, especially when you define rectangles for a link’s active area. pdf-

marks use the PostScript coordinate system which has the origin in the low-

er left corner, the first coordinate increasing to the right, and the second

coordinate to the top. The unit of measurement is the well-known DTP

point, defined as follows:

1 point = 1/72 inch = 25.4⁄72 mm = 0.3528 mm

For example, a U.S. letter page measures 612 x 792 points.
6.2 Preliminaries 85

6.3 Application-specific Embedding Tricks
The method described above for embedding pdfmark instructions in EPS

files works in all programs which support EPS embedding. In addition,

there are some program-specific options for embedding pdfmarks in the

native application document which I’d like to present in this chapter.

Adobe FrameMaker. You may already have wondered about the somehow

strange “PostScript Code” option in a text frame’s properties dialog. In

FrameMaker’s infancy, this was meant to include graphical tricks to be

manually programmed in PostScript (e.g., rotated text – considered highly

innovative at that time). Today – since every man and his dog is able to do

sexy text and graphics effects (FrameMaker supports rotated text by de-

fault) – PostScript frames are rarely used.

Including pdfmarks for preparing PDF conversion puts the PostScript

frames back to work in our days. PostScript frames are a simple and conve-

nient way of defining PDF effects in the native Frame document. The advan-

tage is that you can see and edit the pdfmark code in your documents (con-

trary to the EPS technique). Additionally, FrameMaker makes available the

frame’s coordinates which may be used for defining a rectangular area for a

link or another type of active area, e.g., a form field.

The following sections of this chapter contain tons of pdfmark samples.

Pick the appropriate code for your particular PDF feature of interest and

type it into a newly created text frame. To make life easier and prevent ty-

pos, you may want to open the PDF file of this chapter from the accompa-

nying CD-ROM and cut-and-paste the samples. Take care not to hyphenate

or otherwise alienate the pdfmark code. I found it convenient to define a

paragraph style called “pdfmark” which uses a small font size and deacti-

vates hyphenation. Now select your text frame with the arrow pointer and

click “Graphics”, “Object Properties...”. This brings up the dialog box shown

in Figure 6.3 where you activate the “PostScript Code” check box. The option

results in the text being passed through as PostScript instructions instead

of being printed as text. Note that you have to de-select the “PostScript

Code” option before you can again edit the frame’s contents. It’s also possi-

ble to position PostScript frames on a master page. This is particularly use-

ful, for example, for defining page transitions for PDF presentations.

The PostScript frame’s size depends on whether or not the respective

PDF feature needs geometrical layout information. For example, document

info fields don’t relate to a specific location on any page but to the whole

document. In this case, place a frame with code similar to the following

snippet somewhere near one of the page edges (so that it doesn’t disturb

your on-screen layout when working on the document):
86 Chapter 6: pdfmark Primer

pop pop pop pop

/pdfmark where {pop} {userdict /pdfmark /cleartomark load put} ifelse

[/Title (Installation Instructions)

/Author (Thomas Merz)

/Subject (Preparing and Starting the Engine)

/Keywords (Introduction Manual Troubleshooting)

/DOCINFO pdfmark

Since the four coordinates of the PostScript frame which are supplied by

FrameMaker are not needed here, we get rid of them via pop instructions at

the beginning of the code.

For links, form fields, and other PDF features the situation is quite dif-

ferent since we need a rectangular area for defining their size. pdfmarks

specify this area by means of the /Rect parameter. The following sample de-

fines a URL link which has the size of the PostScript frame as its active area.

The PostScript gobbledygook after /Rect is necessary to adapt Frame coordi-

nates to the notation required for pdfmarks:1

/pdfmark where {pop} {userdict /pdfmark /cleartomark load put} ifelse

[/Rect [7 -4 roll 4 -2 roll pop pop 0 0]

/Action << /Subtype /URI /URI (http://www.ifconnection.de/~tm) >>

/Subtype /Link

/ANN pdfmark

If you want to use pdfmark instructions which make use of /Rect, place

/Rect as first parameter after the opening bracket (parameter ordering isn’t

relevant for pdfmarks) and use the /Rect line shown above instead of the

1. Note to readers fluent in PostScript: FrameMaker resets the coordinate system’s origin to the lower left
corner of the frame, and pushes the offset of this corner from the page origin on the stack, as well as width
and height of the frame.

Fig. 6.3.
Defining a PostScript
frame in FrameMaker
6.3 Application-specific Embedding Tricks 87

one with four explicit numbers as used in the other examples in this chap-

ter. If /Rect is missing from the pdfmark description, enter “pop” four times

at the beginning of your pdfmark code to delete the FrameMaker coordi-

nates from the PostScript stack.

Note that it’s quite useful to include FrameMaker variables inside pdf-

mark instructions. This is very efficient for repeating commands, such as

the author field in the document info. Cross-references used for placing a

chapter heading inside an info field also work nicely.

Section 5.2 explains FrameMaker’s integrated PDF support which spares

you pdfmark programming in many cases.

Microsoft Word. Word too has some means for incorporating your own

pdfmark code in a document. Firstly, use “Tools”, “Options...”, “View” to acti-

vate screen display of field codes. This makes life easier in the following

steps. Using “Insert”, “Field...”, “Field name: Print” you can insert pdfmark in-

structions (surrounded by double quotes) in a dialog box (see Figure 6.4).

The following code in a print field defines PDF document information:

{print "[/Title (Manual) /Author (Thomas Merz) /DOCINFO pdfmark "}

You will need the coordinates of the position on the page or the size of the

paragraph containing the print field in order to use pdfmark instructions

which make use of rectangles. The “\p” option tells Word to define some

variables which can be useful for defining a link’s active area. A complete

list of these variables can be found in Word’s online help. The most impor-

tant variable is “wp$box” because it’s perfectly suited for defining a rectan-

gle. This variable supplies a PostScript definition of a rectangular shape

around the current paragraph. You can use it in a pdfmark instruction as

follows:

{print \p para "[/Rect [wp$box pathbbox] /Page 3 /Subtype /Link /ANN

pdfmark "}

Fig. 6.4.
pdfmark code in a

Microsoft Word print field
88 Chapter 6: pdfmark Primer

The group instruction “para” results in Word’s PostScript relating to the cur-

rent paragraph. The code above transforms the paragraph containing the

print field in a PDF link with a jump to page 3. Remember to include the ad-

ditional line with the print protection code if you want to print and distill

the resulting PostScript file (see Section 6.2).

Finally, here’s an example for defining a URL link inside a Word print

field:

{print \p para "[/Rect [wp$box pathbbox] /Action << /Subtype /URI

/URI (http://www.ifconnection.de/~tm) >> /Subtype /Link /ANN pdfmark "}

This code transforms the current paragraph into a Weblink’s active area.

Section 5.5 informs about more comfortable ways of generating hyper-

text-enhanced PDF from Word documents.

TEX . The powerful TEX typesetting system also has a mechanism for in-

cluding user-defined printer instructions into the output stream. The \spe-

cial instruction can be used to embed PostScript code. It is also suited for

pdfmark programming. The following example defines PDF document in-

formation within a (device-driver-dependent) \special sequence:

\special{ps::

[/Title (User Manual)

/Author (Michael Heinzel)

/Subject (Adjusting the electronics of MH-screen)

/Keywords (screen display MH-screen)

/DOCINFO pdfmark

}%

The macro package hyperref can automatically insert pdfmarks for hyper-

text links and for certain document information. You can find more infor-

mation on creating PDF from a TEX source in Section 5.6.

6.4 Basic pdfmark Functions
Now that we’ve dealt with the necessary preliminaries, let’s take a closer

look at the specific instructions. This section and the next one contain a list

of all pdfmark instructions, including descriptions of the PDF features they

achieve. Since there is a wealth of link and action related options which are

used in many pdfmark operators, these options are discussed separately in

the next section.

The information presented in this and the next section relates to Distill-

er 3.0 and higher. Older versions support a subset of these pdfmarks.

There’s a common scheme for all descriptions: Following a heading

which briefly identifies the topic, a functional description is given along

with usage samples. These samples illustrate important applications of the

operator. The tables given last in the descriptions contain more detailed in-

formation concerning additional variations or options. Note that the sam-
6.4 Basic pdfmark Functions 89

ples only contain the “pure” pdfmark code. Don’t forget to include addi-

tional instructions which may be necessary depending on the software in

use, e.g., for protecting against printing errors, or including the pdfmarks in

the program (like coordinate transformations in a FrameMaker PostScript

frame).

Keys in the tables which must be present are labeled as such, others are

optional. For most optional keys the default value is shown which is used

when the key is missing.

Notes. The /ANN pdfmark instruction generations PDF annotations.

These include notes, links, and special goodies such as sound and video,

Acrobat menu items, and Weblinks (URLs). The /Subtype key defines the

particular kind of annotation to create. If /Subtype is missing, a PDF note is

generated.

The following code creates an open note with red window border:

[/Rect [75 400 175 550]

/Open true

/Title (Important note)

/Contents (This document is a preliminary version!)

/Color [1 0 0]

/ANN pdfmark

Table 6.2 contains all keys for notes which may be used with /ANN if /Sub-

type is missing or has a value of /Text. Along with other /Subtype values,

/ANN is used for many other functions too which are explained in the rest

this chapter.

Links. Early Distiller versions used the /LNK key for defining links. In Dis-

tiller 3.0, this is accomplished with /ANN and a /Subtype value of /Link.

Table 6.2. Keys for notes with /ANN, if the /Subtype is /Text or is missing altogether
Key Explanation
/Contents1

1. This key is required.

The note’s text string
/Rect1 Array of four numbers specifying the note’s rectangle
/SrcPg Number of the page on which the note appears. If this key is missing, the

note appears on the current page.
/Open If “true”, the note is open and the text visible. If “false”, only an icon is dis-

played for the note. If the key is missing, the note will be closed.
/Color Array of three RGB values defining the color of the note’s icon or frame.
/Title The note’s title
/ModDate Date and time the note was last modified.
/Subtype For notes always has a value of /Text (this is the default too).
90 Chapter 6: pdfmark Primer

The following code creates a link inside the given rectangle with a blue bor-

der. The link jumps to the next page and retains the viewing parameters

(zoom factor):

[/Rect [70 550 210 575]

/Border [0 0 1]

/Color [0 0 1]

/Page /Next

/View [/XYZ null null null]

/Subtype /Link

/ANN pdfmark

The following code creates a link inside the given rectangle with a red bor-

der. The link jumps to the document named chapter02.doc:

[/Rect [70 600 210 625]

/Color [1 0 0]

/Action /Launch

/File (chapter02.doc)

/Subtype /Link

/ANN pdfmark

I’d like to restrict myself to describing the actual link definition here. Many

ways of selecting a link destination or action to be triggered when the link

is clicked on are described in Section 6.5 (along with many samples).

With the exception of destinations and actions, Table 6.3 lists all keys for

/ANN, when /Subtype has a value of /Link.

Bookmarks. Bookmarks (outline entries) contain text which is related to a

particular location in the document or an action. This means that the infor-

mation in Section 6.5 applies to bookmarks too.

The following code creates a bookmark for jumping to page 1:

[/Page 1 /View [/XYZ 44 730 1.0] /Title (Start) /OUT pdfmark

Table 6.3. Keys for links with /ANN and the /Subtype value /Link
Key Explanation
Destination or action for this link (see Section 6.5)1

/Rect1

1. This key is required.

Array of four numbers defining the link’s active area
/Subtype1 For links always /Link
/Border Array defining the link rectangle’s appearance (line width and line dash).

The array [0 0 0] means no border at all.
/SrcPg Number of the page on which the link is to appear. If the key is missing,

the link appears on the current page.
/Color Array of three RGB values defining the link rectangle’s color.
6.4 Basic pdfmark Functions 91

The following code creates a bookmark with the title “Introduction” which

jumps to the article thread labeled “A” if clicked on:

[/Action /Article /Dest (A) /Title (Introduction) /OUT pdfmark

The following code creates a bookmark with a URL link:

[/Title (Home page)

/Action << /Subtype /URI /URI (http://www.ifconnection.de/~tm) >>

/OUT pdfmark

With the exception of destinations and actions, Table 6.4 lists all keys for

/OUT. For nested bookmarks, you first have to define the higher-level book-

marks with the correct /Count value, and then the subordinate bookmarks.

Article threads. A PDF article consist of several rectangular areas, called

beads, which are placed on one or more pages. They are linked via their

common title. Additionally an article thread can have some meta-informa-

tion associated with it (keywords, for example) which you can view or edit

in the “View”, “Articles...”, “Info...” menu of Acrobat Exchange.

The following code defines a rectangle for an article bead with the title

“Introduction” and additional meta-information:

[/Title (Introduction)

/Author (Thomas Merz)

/Subject (Brief Overview of Engine Maintenance)

/Keywords (Maintenance Overview)

/Rect [225 500 535 705]

/ARTICLE pdfmark

More rectangles for the same article may follow this first definition. They

are linked to the other parts by a common /Title key. Subsequent rectangles

don’t have /Subject, /Author, and /Keywords keys. Table 6.5 lists all keys for

/ARTICLE.

Named destinations. PDF link targets can not only be defined in a layout-

oriented manner (i.e., by specifying a page number and geometric coordi-

nates), but also symbolically. A location in a document may be assigned a

symbolic name. This name may later be used as a link target. A target with a

Table 6.4. Keys for bookmarks with /OUT
Key Explanation
Destination or action for this link (see Section 6.5)1

/Title1

1. This key is required.

The bookmark’s text (a maximum of 32 characters is recommended)
/Count If there are subordinate bookmarks, /Count specifies their number, other-

wise this key is missing. If /Count is negative, the bookmark is closed,
otherwise open.
92 Chapter 6: pdfmark Primer

symbolic name is called a “named destination”. This technique has the ad-

vantage that the target location may change without invalidating the link.

For this reason programs which automatically generate pdfmarks use sym-

bolic names for their link targets. These names are visible in Acrobat Ex-

change too; however, you cannot create named destinations in Exchange,

nor change existing names or their locations. More information on named

destinations can be found in Section 8.6.

The following code defines a link target with a symbolic name of

“chapter01” which is located on the current page. Jumping to this target

doesn’t change the zoom factor:

[/Dest /intro /View [/XYZ null null null] /DEST pdfmark

Table 6.6 contains all keys for /DEST.

PostScript instructions. It is well known that PostScript and PDF are very

closely related to each other. However, there are some PostScript features

and tricks which are not possible in PDF, and which are lost when convert-

ing from PostScript to PDF and back to PostScript.

In order to solve this problem you can use pdfmarks to store PostScript

instructions in a PDF file. Acrobat ignores the PostScript when rendering

the file on screen, but when printing to a PostScript device the included in-

structions are embedded in the print data.

Probably a more practical use of this feature than exploring somehow

obscure PostScript features in PDF files is a “don’t display, but print” effect:

Table 6.5. Values for article beads with /ARTICLE
Key Explanation
/Title1 The title of the article
/Rect1 Array of four numbers specifying the current bead of the article
/Page Number of the page on which the bead will be defined
/Subject The article’s subject
/Author The article’s author
/Keywords The article’s keywords

1. This key is required.

Table 6.6. Values for named destinations with /DEST
Key Explanation
/Dest1

1. This key is required.

The destination’s symbolic name
/Page The target page’s number. If this key is missing, the named destination is

defined on the current page.
/View Viewing parameters for the link target
6.4 Basic pdfmark Functions 93

If certain objects on the page are to appear in the printed version only but

shouldn’t be displayed on screen, PostScript pass-throughs might be used.

[/DataSource (100 100 50 0 360 arc fill) /PS pdfmark

Table 6.7 contains all keys for /PS.

Page cropping. Using pdfmarks you can define the size of one or more

pages in a PDF document. Distiller crops the page according to the pdfmark

values, independent of the page size defined in the printer-relevant Post-

Script instructions. These values can be found in Exchange’s status line at

the bottom of the window.

The following code crops all pages of the document to letter size. The

line should be inserted at the beginning of the PostScript file (at the end of

the prolog):

[/CropBox [0 0 612 792] /PAGES pdfmark

Using /PAGE instead of /PAGES crops only the current page. Again, this code

should be inserted at the beginning of the PostScript page description.

The following code defines a cropping rectangle for the current page:

[/CropBox [54 403 558 720] /PAGE pdfmark

Table 6.8 lists the key for /PAGE and /PAGES.

General document information. Using “File”, “Document Info”, “General...”

you can view or change a PDF’s general document information fields. Ac-

cording to the documentation, these fields can be defined with pdfmark in-

structions of type /DOCINFO at an arbitrary location within the PostScript

code. However, I found /DOCINFO only to work reliably if placed on the first

document page.

The following code defines the document information fields of a PDF

file:

Table 6.7. Values for “pass-through” PostScript instructions with /PS
Key Explanation
/DataSource1

1. This key is required.

String or file containing the PostScript code
/Level1 Alternative PostScript code for printing to a PostScript Level 1 device

Table 6.8. Key for cropping pages with /PAGE or /PAGES
Key Explanation
/CropBox Array of four numbers specifying location and size of the visible page area.

The page size may vary from 1 to 45 inches (72 to 3240 points).
94 Chapter 6: pdfmark Primer

[/Title (User Manual)

/Author (Michael Heinzel)

/Subject (Adjusting the electronics of MH-screen)

/Keywords (screen display MH-screen)

/Creator (DocMaker 1.0)

/ModDate (D:19980210205731)

/DOCINFO pdfmark

Table 6.9 lists the keys for /DOCINFO. Additionally, custom key names can

be inserted. Although they can’t be viewed in Acrobat, custom fields are

quite useful in index queries (you can find more details about custom info

field names in Section 4.4). In order to define a custom field called “Depart-

ment”, for example, add the following line to the pdfmark code above:

/Department (Marketing)

If such a custom info field exists in all documents, you can restrict an index

query to all files created in a specific department.

Note that Distiller attempts to extract some information from the DSC

comments at the beginning of the PostScript file if there are no /DOCINFO

pdfmarks present. These comments are listed in parentheses in the table.

Viewer properties. A PDF file may specify the Acrobat viewer’s behavior.

This includes bookmark or thumbnail display as well as full-screen mode.

In Acrobat Exchange, you can edit these settings via “File”, “Document Info”,

“Open...”.

The following code results in Acrobat opening the document at page 3

with thumbnail display enabled:

[/PageMode /UseThumbs /Page 3 /DOCVIEW pdfmark

For a screen presentation it may be useful to open the document in full-

screen mode:

[/PageMode /FullScreen /DOCVIEW pdfmark

Table 6.9. Keys for document info fields using /DOCVIEW
Key Explanation
/Author Author of the document (%%For)
/Creation-
Date

Document creation date and time

/Creator Name of the program used to create the original document (%%Creator)
/Producer Name of the program used to convert the original document to PDF
/Title Document title (%%Title)
/Subject Subject of the document contents
/Keywords Keywords for the document
/ModDate Date and time of last document change
6.4 Basic pdfmark Functions 95

Table 6.10 lists all keys for /DOCVIEW.

Page transitions. In Acrobat you can choose among several page transi-

tions in order to make the process of replacing a page with the next more

attractive. Unfortunately, these effects cannot be set in Acrobat Exchange.

Although you can choose a page transition in “File”, “Preferences”, “Full

Screen”, this setting relates to the whole document, not to individual pages

in the file. Similarly to named destinations, individual page transitions are

a PDF feature not supported in Acrobat’s user interface. Even the pdfmark

reference manual remains silent about this topic – you have to take a look

at the PDF specification.

The following code specifies a mosaic-like transition from the old page

to the new page. The old page contents “dissolve” to reveal the new page:

[{ThisPage} << /Trans << /S /Dissolve >> >> /PUT pdfmark

The following code specifies a wiping effect which generates the new page

by wiping over the old page from left to right:

[{ThisPage} << /Trans << /S /Wipe /Di 180 >> >> /PUT pdfmark

{ThisPage} is a symbolic name for the current page. This entry always has to

be included exactly as shown. The page transitions are always activated

when opening the page, irrespective of the previous page. Therefore it

doesn’t matter whether the page is displayed through manual navigation,

by page number, or a link.

Table 6.11 lists all keys for page transitions supported in Acrobat 3.0.

Table 6.10. Keys for viewer properties using /DOCVIEW
Key Explanation
Document open action (see Section 6.5)
/PageMode /UseNone (default): The document is displayed without bookmarks and

thumbnails.
/UseOutlines: The document is displayed with bookmarks.
/UseThumbs: The document is displayed with thumbnails.
/FullScreen: The document is displayed in full-screen mode.

Table 6.11. Keys for page transitions with /PUT
Key Explanation
/Split Two lines sweep across the screen to reveal the new page similar to open-

ing a curtain.
/Blinds Similar to /Split, but with several lines resembling “venetian blinds”
/Box A box enlarges from the center of the old page to reveal the new one.
/Wipe A single line “wipes” across the old page to reveal the new one.
/Dissolve The old page “dissolves” to reveal the new one.
96 Chapter 6: pdfmark Primer

For some of the transitions additional parameters may be specified. The fol-

lowing code results in a split effect with the lines moving horizontally (/H)

from the inner parts of the page to the outer parts (/O). The duration of the

effect is two seconds (/D):

[{ThisPage} << /Trans << /S /Split /D 2 /Dm /H /M /O >> >> /PUT pdfmark

Table 6.12 lists all supported parameters for /Trans, along with the kind of

transition on which the parameters may be applied.

Generally, a page transition will be defined for the current page. However,

it’s also possible to define transitions for another page. Table 6.13 lists all

keys which can be used with /PUT. Note that only direct page specification

may be used for page transitions. {Catalog} and {DocInfo} are reserved for

other /PUT applications.

Viewer preferences. A PDF document may specify several Viewer prefer-

ences which apply when opening the file in Acrobat Reader or Exchange.

/Glitter Similar to /Dissolve, except the effect sweeps from one edge to another.
/R (Replace) The old page is simply replaced with the new one without any special

effect. This is the default.

Table 6.12. Additional parameters for page transitions with /Trans
Key Explanation
/D Duration of the transition effect in seconds (applies to all effects)
/Di
(Direction)

Direction of the movement (multiples of 90° only). Values increase in a
counterclockwise fashion, 0° points to the right (for /Wipe and /Glitter).

/Dm
(Dimension)

Possible values are /H or /V for a horizontal or vertical effect, respectively
(for /Split and /Blinds).

/M (Motion) Specifies whether the effect is performed from the center out or the edges
in. Possible values are /I for in and /O for out (for /Split and /Box).

Table 6.13. Selecting pages with /PUT
Key Explanation
{Catalog} (reserved for other /PUT applications)
{DocInfo} (reserved for other /PUT applications)
{PageN} Page N (replace N with a page number)
{ThisPage} Current page
{PrevPage} Previous page
{NextPage} Next page

Table 6.11. Keys for page transitions with /PUT (cont.)
Key Explanation
6.4 Basic pdfmark Functions 97

You can edit these settings in Exchange with “File”, “Document Info”,

“Open...”

The following code instructs the viewer to hide the toolbar when open-

ing the document:

[{Catalog} << /ViewerPreferences << /HideToolbar true >> >> /PUT pdfmark

You can also specify the page layout mode in the document. The following

code makes Acrobat open the file in two-column layout (two pages are dis-

played side-by-side):

[{Catalog} << /PageLayout /TwoColumnRight >> /PUT pdfmark

Note that the syntax is different to the preceding example. The /PageLay-

out description in the PDF specification doesn’t match the implementation

in Acrobat.

Table 6.14 lists all entries for the /ViewerPreferences dictionary. The de-

fault settings are given in parentheses. These apply when the respective en-

try is missing. Except for the last two entries, all keys are populated with

Boolean values.

Encapsulating graphics. Acrobat’s optimization function compresses PDF

data and rearranges the objects for page-at-a-time download from a Web

server. There is another optimizarion that is not as well known even though

Table 6.14. Additional parameters for /ViewerPreferences
Key Explanation
/HideToolbar Hide toolbar (false).
/Hide-
Menubar

Hide menu bar (false).

/Hide-
WindowUI

Hide other user interface elements (false).

/FitWindow Adjust window size to the size of the first page (false).
/Center-
Window

Place window in the middle of the screen (false).

/PageLayout1

1. /PageLayout isn’t documented correctly in the specification and is used differently than the other
parameters (see example).

Specify page layout. Possible values are:
/SinglePage: Display single pages
/OneColumn: Display pages in columns
/TwoColumnLeft: Display pages in two-column layout, starting with a left
page
/TwoColumnRight: Display pages in two-column layout, starting with a
right page

/NonFull-
Screen-
PageMode

Specifies how to display the document when exiting full-screen mode.
Except /FullScreen the same values are allowed as for the /PageMode key
in a /DOCVIEW instruction (see Table 6.10).
98 Chapter 6: pdfmark Primer

it further decreases file size in certain situations. Exchange checks for imag-

es in the document which are repeatedly used on multiple pages, for exam-

ple a logo on each page header. If such an image is found, its PDF data is in-

cluded only once in the file. Other pages reference the image data already

included for another page. If an image is used several times in a document,

this feature dramatically reduces the overall file size.

Similar optimization can be achieved by means of pdfmarks, although

more programming is needed which requires a good command of the Post-

Script language. For this reason, I’d like to restrict myself to explaining the

basic principle without working out a full-blown example.

Let’s suppose we have an EPS file with the image to be included in the

document. /BP (BeginPicture) and /EP (EndPicture) instructions surround

the image’s PostScript code. The image is assigned an arbitrary symbolic

name in /BP. Using the /SP (ShowPicture) pdfmark operator along with the

symbolic name, the image can be referred to on arbitrary pages without re-

peating the actual PostScript instructions:

[/BBox [100 100 400 600] /_objdef {company_logo} /BP pdfmark

...the company logo’s PostScript instructions...

[/EP pdfmark

Use the following code to reuse the image on another page in its original

size and on the original position:

[{company_logo} /SP pdfmark

If you want to change the image’s location or size, you have to transform

the PostScript coordinate system with appropriate PostScript language

commands before issuing the /SP instruction.

Table 6.15 lists the keys for /BP. The /EP instruction doesn’t need any ad-

ditional parameters. /SP only needs the symbolic name defined in /BP.

Attaching an index file. Using “File”, “Document Info”, “Index...” in Ex-

change you can attach an index file to a PDF file. This index is activated

without any further user intervention when the document is opened.

The PDF specification doesn’t mention the instructions necessary to de-

fine the index’s name in the PDF file. However, it’s easy to find out the in-

structions by manually attaching an index in Exchange, and analyzing the

resulting PDF file. As it turns out, you can achieve the same effect with pdf-

marks.

Table 6.15. Keys for embedding EPS graphics with /SP
Key Explanation
/BBox Array of four numbers defining the graphic’s bounding box
/_objdef The graphic’s symbolic name in curly braces
6.4 Basic pdfmark Functions 99

The following code attaches an index called cms.pdx to the PDF file. Careful-

ly take into account the many angle brackets in order to avoid error messa-

ges from Distiller.

[{Catalog} << /Search << /Indexes

[<< /Name /PDX /Index (cms.pdx) >>]

>> >>

/PUT pdfmark

Page open actions. Using “Document”, “Set Page Action...” in Exchange

you can define actions which automatically take place when opening the

page. This effect can also be achieved with pdfmarks. You can find an exam-

ple in the next section which describes actions. Note the difference be-

tween “page action” and “page transition”: page transitions define how the

previously displayed page is replaced with the new page.

Creating form fields. Exchange’s form tool offers plenty of features for

defining PDF form fields. However, defining fields manually is a time-con-

suming and labor-intensive process. This effort can be reduced by using

pdfmarks. Although not all form features are supported, creating fields and

defining some of their features is indeed possible with pdfmarks. To facili-

tate changing the size and position of the fields, I recommend the EPS tech-

nique for including the form pdfmarks in the PostScript code. Detailed de-

scriptions of the various field types can be found in Section 7.2.

Since form fields have many attributes, and not all field properties can

be defined with pdfmarks, I’d like to restrict myself to some examples for

defining field types. More detailed information can be found in the PDF Ref-
erence Manual. With the code shown below you can at least prepare and ex-

actly position the form fields in the original file. Setting the field attributes

is best done in Acrobat Exchange.

Setting font and other field attributes requires so-called widget defini-

tions. These are additional pdfmark instructions which must precede the

following examples (on the first page of the document). You can find an EPS

file called afrmdict.eps in the PFN directory on the Acrobat CD-ROM. This

EPS file contains the necessary widget definitions.

The following code defines a text field with a border width of one point.

The default value is “Thomas Merz”, the field’s size is specified in /Rect:

[/T (text input field) % title

/Subtype /Widget

/FT /Tx % field type text box

/DV (Thomas Merz) % default value

/Rect [0 0 216 18]

/F 4 % field is printable

/BS << /S /S /W 1 >> % border style solid, width = 1

/MK <<

/BC [1 0 0] % border color red
100 Chapter 6: pdfmark Primer

/BG [1 1 1] >> % background color white

/ANN pdfmark

The following code defines a list box with two list elements called

“element1” and “element2”. When activated, the elements export the values

“e1” and “e2”, respectively. “e1” is the default value:

[/T (list box)

/Subtype /Widget

/FT /Ch % field type choice: list box

/Rect [0 0 216 18]

/F 4

/DV (e1) % default value

/DA (/Helv 12 Tf 0 g)

/Opt [[(e1)(element1)] [(e2)(element2)]]

/ANN pdfmark

Including a suitable /Ff flag value in the preceding example results in a

combo box. This means the list elements are editable by the form user:

[/T (combo box)

/Subtype /Widget

/FT /Ch % field type choice: combo box

/Rect [0 0 216 180]

/F 4

/Ff 393216 % special flag signals combo box

/DV (e1) % default value

/DA (/Helv 12 Tf 0 g)

/Opt [[(e1)(element1)] [(e2)(element2)]]

/ANN pdfmark

Next, let’s create a check box:

[/T (check box)

/Subtype /Widget

/FT /Btn % field type button: check box

/Rect [0 0 216 18]

/F 4

/BS << /S /S /W 1 >>

/MK << /BC [1 0 0] /BG [1 1 1] >>

/ANN pdfmark

Finally, a push button:

[/T (button)

/Subtype /Widget

/FT /Btn % field type button: check box

/Rect [0 0 216 18]

/F 4

/Ff 65540 % special flag signals push button

/BS << /S /S /W 1 >>

/MK << /BC [1 0 0] /BG [1 1 1] >>

/DA (/Helv 12 Tf 0 g)

/ANN pdfmark
6.4 Basic pdfmark Functions 101

Since I can’t cover creating form fields with all options and variations, Table

6.16 only gives an overview of possible field types. These main field types

are further refined using several values in the /Ff flag (see examples above).

More information can be found in the “PDF Reference Manual”.

6.5 Destinations and Actions
Destinations and actions are used in three areas, all of which can be set up

in an interactive manner in Acrobat Exchange or with pdfmarks:

> Links are created with the /ANN pdfmark and a /Subtype of /Link. In Ex-

change simply use the link tool to define a rectangle and select the type

of action from a pull-down menu (see Figure 6.5).

> Bookmarks are created with the /OUT pdfmark. In Exchange choose

“Document”, “New Bookmark”, select the bookmark, “Edit”, “Properties...”,

and choose the desired type of action.

> Page actions – actions which are performed when the page is opened –

are defined with the /AA and /PUT pdfmark instructions. The corre-

sponding menu sequence in Exchange is “Document”, “Set Page Ac-

tion...”, “Add...”, choose type of action.

Figure 6.5 shows the dialog box for creating a link.1 It contains all link desti-

nations and actions covered in this section.

Before delving into the many and somehow confusing variations for

link destinations and page actions, I’d like to give an example for each of

the three applications outlined above. We’ll use an intradocument link, a

URL link, and playing a sound file as actions.

The following code creates a link which jumps to page 5 of the docu-

ment:

[/Rect [70 550 210 575]

/Page 5

/View [/XYZ null null null]

/Subtype /Link

/ANN pdfmark

The following code creates a bookmark. Clicking this bookmark results in

jumping to the specified URL:

Table 6.16. Possible form field types (/FT key) with /ANN and /Widget subtypes
Key Explanation
/Tx Text field
/Ch (choice) List box
/Btn (button) Check box, radio button, or push button.

1. In case you wonder what the “JavaScript” entry is supposed to do – read Section 7.6.
102 Chapter 6: pdfmark Primer

[/Count 0

/Title (Click here for home page)

/Action << /Subtype /URI /URI (http://www.ifconnection.de/~tm) >>

/OUT pdfmark

The following code results in the sound file melody.snd being played as

soon as the first page is opened (generally, when opening the document):

[/Rect [0 0 0 0]

/Subtype /Movie

/Title (Greeting sound)

/Movie << /F (melody.snd) >>

/ANN pdfmark

[{Page1} << /AA << /O << /S /Movie

/T (Greeting sound) /Operation /Play >> >> >>

/PUT pdfmark

Note that the greeting sound is attached to an annotation, although a

sound doesn’t need an active area on the page. We use a size of 0 for this

area to make sure it doesn’t disturb anybody. The page action simply relates

to the name of the annotation.

Overview. Following the three application examples, I’d like to give an

overview of all link destinations and page actions. More detailed descrip-

tions of all flavors can be found after the overview.

A closer look at Figure 6.5 clarifies the relationship of pdfmarks and Ex-

change’s user interface elements: The “View” link type relates to the /View

and /Page keys. All other types are implemented with the /Action key. Links

to named destinations cannot be defined in Exchange at all but only with

the /DEST pdfmark operator.

Table 6.18 lists all keys for /Action. The samples and tables on the follow-

ing pages explain how to use them, and which subkeys are involved.

Table 6.17. Keys for links and actions
Key Explanation
/View Array describing a document location which serves as a destination for a

bookmark or link. See Table 6.19 for more details.
/Page Describes a link destination along with /View. /Page specifies the number

of the page (counting from 1). A value of 0 means no destination at all. For
links and article threads, the values /Next and /Prev relate to the next or
previous page. /Page is only required if the destination is not located on
the current page.

/Action Most general specification. See Table 6.18 for more details.
/Dest Symbolic name of a named destination defined with /DEST. If used as a

destination for an article, /Dest contains the title or number of the article
(counting article numbers from 0).
6.5 Destinations and Actions 103

Linking to a page in the same document. The following code defines a

rectangular link area. Clicking on this area results in jumping to the next

page:

[/Rect [70 550 210 575]

Table 6.18. Direct and indirect keys for /Action
Key Explanation
/GoTo Jump to a page in the current document. Requires the /Dest key or both

the /Page and /View keys.
/GoToR Jump to a page in another PDF document. Requires the /Dest key or both

the /Page and /View keys, and the /File key.
/Launch Launches a non-PDF document or an application program. Requires /File.
/Article Link to an article in the current or another PDF document. Requires /Dest

and additionally /File, if the article is contained in another PDF file.
/URI1 URL for linking to a document on the WWW
/Sound1 Play a sound file
/Movie1 Play a movie or sound file
/SetState1,2 Store viewing definitions for an annotation
/Hide1 Hide or show an annotation
/Named1 Execute one of Acrobat’s menu functions
/SubmitForm1 Send form contents to a URL
/ResetForm1 Reset form contents to default values
/ImportData1 Import form fields from a file
/JavaScript Insert JavaScript for the whole document or a form field

1. These actions cannot be activated directly by a key, but must be defined indirectly via a dictionary entry
for the /Action key. This is already taken into account in the following descriptions.

2. Acrobat Exchange doesn’t offer any user interface for this feature.

Fig. 6.5.
All of the actions which can be defined in

Exchange using a link, a bookmark, or a page
action can also be defined using pdfmarks.
104 Chapter 6: pdfmark Primer

/Page /Next

/View [/XYZ -5 797 1.5]

/Subtype /Link

/ANN pdfmark

Table 6.19 lists all keys for the /View array, as well as the corresponding

values.

Link to another PDF document. Links can jump not only to a page in the

current document, but also to a page in another PDF file.

The following code defines a link rectangle. Clicking on the link’s active

area jumps to a document with a file name of chapter06.pdf:

[/Rect [70 600 210 625]

/Action /GoToR

/File (chapter06.pdf)

/Subtype /Link

/ANN pdfmark

Table 6.20 lists all keys for /GoToR. The platform dependent keys can be

used to specify platform-specific variations of the file name. These are only

used on the respective platform and override the generic /File key.

Table 6.19. Keys for the /View array
Key Explanation
/Fit Fit page to window size.
/FitB Fit visible page contents to page width.
/FitH top

Fit width of the page to window size. “top” specifies the desired distance
from the page origin to the upper edge of the window. If “top” has a value
of -32768, Acrobat calculates the distance from the page origin to the up-
per edge of the window automatically.

/FitBH top
Fit visible page contents to window size. “top” specifies the desired dis-
tance from the page origin to the upper edge of the window.

/FitR x1 y1 x2 y2
Fit the rectangle specified by the four numbers to the window.

/FitV left
Fit page height to window size. “left” specifies the desired distance from
the page origin to the left edge of the window.

/FitBV left
Fit height of visible page contents to window size. “left” specifies the de-
sired distance from the page origin to the left edge of the window.

/XYZ left top zoom
“left” and “top” specify the desired distance from the page origin to the
upper left corner of the window. “zoom” specifies the zoom factor (1
means 100%). A value of “null” for one of the three numbers instructs
Acrobat to retain the old value.
6.5 Destinations and Actions 105

Launching another document or application. The next step in generaliz-

ing link destinations is a document in a format other than PDF, or another

application program. Acrobat launches an external program and passes the

file name given in the pdfmark link or bookmark.

The first example illustrates the main problem with such a construct – it

is no longer portable. This means the link doesn’t work on all operating sys-

tem platforms. The names of the programs as well as the details of launch-

ing a program depend heavily on the underlying operating system (the us-

er’s, not yours!).

The following code defines a link. When activated, it starts the Windows

Paintbrush program (without a document file name):

[/Rect [70 600 210 625]

/Border [16 16 1]

/Action /Launch

/File (pbrush.exe)

/Subtype /Link

/ANN pdfmark

Table 6.21 lists all keys for /Launch.

Table 6.20. Keys for /GoToR
Key Explanation
/File1 Path name of the PDF file (relative names are allowed)
/DOSFile MS-DOS path name (overrides /File if present)
/MacFile Mac path name (overrides /File if present)
/UnixFile Unix path name (overrides /File if present)
/URI URL of the PDF file (note: “URI” for “Universal Resource Identifier, not

“URL”)
/ID ID number of the PDF file (rarely used)
/New-
Window

If this key has a value of “true”, Acrobat opens a new window for the file.

1. This key is required.

Table 6.21. Keys for/Launch
Key Explanation
/File1 Path name of the file or executable program (relative names are allowed).

Under Windows 95 and NT, when /File points to a directory, Explorer is
launched to explore this directory.

/DOSFile MS-DOS path name (overrides /File if present)
/MacFile Mac path name (overrides /File if present)
/UnixFile Unix path name (overrides /File if present)
/URI URL of the PDF file (note: “URI” for “Universal Resource Identifier, not

“URL”)
/Dir For Windows: initial directory of the application
106 Chapter 6: pdfmark Primer

Linking to a named destination. Symbolic names for document locations

defined with a /DEST instruction (named destinations) can also be used as

destinations. As already explained, Acrobat Exchange doesn’t offer any user

interface for defining such named destinations. Although existing named

destinations in a document are displayed, you cannot edit or create them in

Exchange.

The following code defines a link to the destination with the symbolic

name “chapter5” in the file target.pdf:

[/Rect [70 650 210 675]

/Color [0 0 1]

/Dest /chapter5

/File (target.pdf)

/Subtype /Link

/ANN pdfmark

Linking to a file on the WWW. A bookmark or link may also reference a

document (more generally, a resource) on the Internet. In this case, the tar-

get is defined by its URL (Universal Resource Locator). If Acrobat doesn’t al-

ready display in a Web browser’s window, the browser is launched. Note that

URLs in PDF are always labeled URI (Universal Resource Identifier).

The following code defines a link rectangle. When activated, it jumps to

a home page:

[/Rect [50 425 295 445]

/Action << /Subtype /URI /URI (http://www.ifconnection.de/~tm) >>

/Subtype /Link

/ANN pdfmark

Note that the /IsMap key allows you to define an image map for interactive

graphics. Clicking in the link’s area can trigger different actions according

to the mouse pointer’s location inside the link graphic. More information

on PDF image maps can be found in Section 8.6. Table 6.22 lists all keys for

/URI.

/Op (open) or (print). Only supported in Windows
/WinFile File name of the document or application
/Params2 Parameters for a Windows application
/Unix Parameters for a Unix application
/New-
Window

If this key has a value of “true”, Acrobat opens a new window for the file.

1. This key is required.
2. This key doesn’t work in Distiller 3.01.

Table 6.21. Keys for/Launch (cont.)
Key Explanation
6.5 Destinations and Actions 107

Defining a document’s base URL. Like HTML, PDF supports the concept of

a base URL and relative URLs. This is useful when a large document collec-

tion is to be moved to another server. If base URLs and relative links are

used, not all links have to be adjusted but only the base URLs. Any PDF docu-

ment can be assigned a base URL. In Acrobat Exchange this is achieved via

“File”, “Document Info”, “Base URL...”. Attaching a base URL can also be im-

plemented with pdfmarks in the original file. Absolute URLs – WWW loca-

tions with complete server addresses – remain unchanged by such a base

URL definition.

The following code defines the given URL as base URL for all relative In-

ternet links in the document:

[{Catalog} << /URI << /Base (http://www.ifconnection.de/~tm) >> >>

/PUT pdfmark

Inserting JavaScript instructions. Using Acrobat 3.01 and the Forms exten-

sion it’s possible to insert JavaScript instructions in a document. These are

executed when the user clicks on a link, opens a PDF file, or fills form fields.

More information on JavaScript in PDF can be found in Section 7.6.

JavaScript can also be embedded using pdfmarks. The following code de-

fines JavaScript code which is activated by clicking on a link:

[/Rect [400 400 500 450]

/Action << /Subtype /JavaScript

/JS (console.show\(\)\r console.println\("Cuckoo!"\);) >>

/Subtype /Link

/ANN pdfmark

As can be seen in the example, the JavaScript instructions are contained in

a string. This means that several special characters, mainly (,), and \, must

be “escaped” with a backslash character \. Line-end characters in the Java-

Script are labeled with \r.

JavaScript instructions can be defined for use in PDF forms so that they

are executed when filling out the fields. The following example defines a

text field with additional JavaScript instructions which are executed for cal-

culating field values, verifying and formatting the field input, and checking

the keyboard input for valid characters.

Table 6.22. Keys for /URI
Key Explanation
/Subtype1 For Internet links always /URI
/URI1 The target’s URL in 7-bit ASCII encoding
/IsMap2 “true” if the mouse coordinates are to be appended to the URL (image

map feature). Default is “false”.

1. This key is required.
2. It’s not possible to define image maps in Acrobat Exchange.
108 Chapter 6: pdfmark Primer

[/Rect [400 400 600 450] /T (text input) /Subtype /Widget

/FT /Tx /F 4 /Ff 65540 /BS << /S /S /W 1 >>

/AA <<

/C << /S /JavaScript /JS (AFSimple_Calculate\("SUM", "F1, F2, F3"\);) >>

/V << /S /JavaScript /JS (AFRange_Validate\(true, 0, true, 1000\);) >>

/F << /S /JavaScript /JS

(event.value=util.printx\("999",\revent.value\);) >>

/K << /S /JavaScript /JS (var valid = new String\("-0123456789"\);\rif

\(valid.indexOf\(event.key\) == -1\)\r{\r\tsys.beep\(1\);\revent.rc

= false;\r}) >>

>>

/MK << /BC [1 0 0] /BG [1 1 1] >>

/ANN pdfmark

Finally, it’s possible to embed JavaScript instructions which are executed

when the document is opened. The script is assigned the symbolic name

“TMScript” and stored in the “Catalog” data structure of the PDF document:

[/_objdef {TMScript} /type /dict /OBJ pdfmark

[{TMScript} << /JavaScript << /Names [(Cuckoo) << /S /JavaScript

/JS (console.show\(\)\rconsole.println\("Cuckoo!"\);) >>]

>> >>

/PUT pdfmark

[{Catalog} << /Names {TMScript} >> /PUT pdfmark

To insert multiple scripts, adjust the example above according to the fol-

lowing scheme:

[{TMScript} << /JavaScript << /Names [

(script1) << /S /JavaScript /JS (...) >>

(script2) << /S /JavaScript /JS (...) >>

] >> >>

/PUT pdfmark

The names of the JavaScripts are stored in the “names tree” of the PDF docu-

ment which also holds destination names. If the document contains named

destinations, the names of the JavaScripts must be inserted in the existing

names tree. Since this is not possible with pdfmarks, the above technique

does not work for PDF file containing named destinations.

More details on JavaScript programming in PDF, especially on additional

objects and methods, can be found in Section 7.6 of this book, and in the Ac-

robat Forms documentation. Table 6.23 lists the keys for several kinds of

JavaScript instructions which can be bound to form fields.

Table 6.23. Keys for JavaScript instructions with /AA
Key Explanation
/K (keystroke) JavaScript for checking the validity of the keyboard input
/F (format) JavaScript for formatting the input
/V (validate) JavaScript for checking the field values when the field is exited
/C (calculate) JavaScript for calculating field values when the field is exited
6.5 Destinations and Actions 109

Linking to an article. When jumping to an article, the first bead of the arti-

cle is displayed. The article thread may be identified by title or number.

The following code defines a bookmarks labeled “Lead story” which

jumps to the article thread of the same name:

[/Dest (Lead story) /Title (Lead story) /Action /Article /OUT pdfmark

When jumping to an article, all /GoToR keys (Table 6.20) are allowed. /File is

necessary only when the article is located in another PDF file. Additionally,

the key in Table 6.24 is required.

Playing sound and video files. Given suitable hardware and software

(sound card, QuickTime) Acrobat is capable of playing sound and video

files. External sound files and video clips both are stored with the /Movie

key in the PDF. Strictly speaking, there’s another key called /Sound for di-

rectly embedding the sound data in the PDF file. In practice, however, both

types of data are treated as external data of type /Movie. Actually, embed-

ding the movie or sound data in the PDF file isn’t possible, only linking.

To be sure to include movies successfully, note that not all file formats

are supported on all platforms. A list of supported sound and video formats

can be found in the Acrobat documentation. Since videos can only be scaled

proportionally, the movie rectangle must be created proportional to the

movie’s edges.

The following code plays the film from the external file vacation.mov in

the specified rectangle:

[/Rect [216 503 361 612]

/Type /Annot

/Subtype /Movie

/Movie << /F (vacation.mov) >>

/ANN pdfmark

The following code plays the sound file “melody.snd” when the rectangle’s

active area is clicked:

[/Rect [216 503 361 612]

/Type /Annot

/Subtype /Movie

/T (My composition)

/Movie << /F (melody.snd) >>

/ANN pdfmark

Table 6.24. Additional key for /Article
Key Explanation
/Dest1

1. This key is required.

Article target. A string containing the article’s title. Alternatively, a num-
ber may be specified which is the number of the article in the document
(the first article in the document is numbered 0).
110 Chapter 6: pdfmark Primer

Table 6.25 lists the keys for /Movie.

The information in the /A dictionary describes the dynamics of playing the

movie. Table 6.26 lists all keys for the /A dictionary. All keys are optional

(details on the keys not described in the table can be found in the PDF speci-

fication).

Table 6.25. Keys for /Movie
Key Explanation
/Subtype1

1. This key is required.

For videos and external sounds always /Movie
/A false: Play the movie when clicked

true: Play the movie with the default activation values (this is the default
for /A)
Alternatively, a dictionary may be used as value for the /A key. See Table
6.26 for details.

/Movie1 Dictionary describing the movie. It may contain the following keys:
/F: Name of the movie file
/Aspect: Array of two values describing the movie’s size in pixels
/Rotate: Number of degrees the movie has to be rotated clockwise (multi-
ples of 90° only, 0° is top)
/Poster: Boolean which indicates whether or not to display the poster
from the movie file

/Operation /Play: start playing the movie (default value)
/Stop: stop playing the movie
/Pause: pause playing the movie
/Resume: resume playing a paused movie

/T (Title) The movie’s title

Table 6.26. Keys for the optional /A dictionary in a /Movie instruction
Key Explanation
/Show-
Controls

Boolean indicating whether or not a movie controller bar is shown when
the movie is displayed

/Mode /Once: Show the movie once and stop
/Open: Show movie and leave controller open
/Repeat: Repeat movie until stopped by user
/Palindrome: play back and forth until stopped by user

/Syn-
chronous

If true, the user must wait for the movie to be finished before further
Acrobat interaction is allowed

/Start Starting time of the movie segment
/Duration Duration of the movie segment
/Rate Initial relative speed of the movie
/Volume Volume setting for the movie
6.5 Destinations and Actions 111

Hiding and showing fields. Hiding and showing form fields is quite a use-

ful feature for implementing context-sensitive help and similar interactive

elements. The field to be hidden or shown is identified by its name.

When the link generated by the following code is activated, the contents

of the field called “help” are displayed if the field was hidden before:

[/Rect [50 425 295 445]

/Action << /Subtype /Hide

/T (help)

/H true >>

/Border [1 1 1]

/Subtype /Link

/ANN pdfmark

Table 6.27 lists all keys for /Hide.

Submitting a form to a URL. The ability to submit a form’s contents to a

certain URL is the cornerstone of PDF form usage on the Web. The form’s

contents can be sent in either FDF (Forms Data Format) or HTML to the

server.

The following code submits the form data in FDF format to the specified

CGI script on the server:

[/Rect [50 425 295 445]

/Action << /Subtype /SubmitForm

/F (http://www.ifconnection.de/~tm/cgi-bin/order.pl#FDF) >>

/Flags 0

/Subtype /Link

/Border [1 1 1]

/ANN pdfmark

Table 6.28 lists all keys for /SubmitForm.

/FWScale For floating window movies, the magnification at which to play the movie
/FWPosition For floating window movies, the screen position at which to play the

movie

Table 6.27. Keys for /Hide
Key Explanation
/Subtype1

1. This key is required.

For showing/hiding fields always /Hide
/T1 Name of a form field or array of several field names to be hidden or shown
/H (Hide) “true” means hide, “false” means show the field. The default is “true”.

Table 6.26. Keys for the optional /A dictionary in a /Movie instruction
Key Explanation
112 Chapter 6: pdfmark Primer

Resetting a form to its default values. A button for resetting a form to its

default values makes it easy for the user to start over with a form. Resetting

means all fields with predefined default values are set to this value, and

fields without any default value remain empty.

The following code resets all fields of the document to their default

values:

[/Rect [50 425 295 445]

/Action << /Subtype /ResetForm >>

/Subtype /Link

/Border [1 1 1]

/ANN pdfmark

Table 6.29 contains all fields for /ResetForm.

Importing form data from a file. Importing form contents from a file fa-

cilitates filling multiple similar forms, especially when the forms adhere to

the PFN standard (Personal Field Names; a description of the PFN standard

can be found in Section 7.5). The creator of a form may further facilitate im-

porting form data from a file by supplying an import push button.

The following code defines a rectangle for importing all form fields from

a FDF file called myprof.fdf:

[/Rect [50 425 295 445]

/Action << /Subtype /ImportData

/F (myprof.fdf) >>

/Subtype /Link

/Border [1 1 1]

/ANN pdfmark

Table 6.28. Keys for /SubmitForm
Key Explanation
/Subtype1 For submitting form data always /SubmitForm
/F (File)1 URL of the Web server script for processing the data
/Fields (used internally)
/Flags Integer for specifying FDF or HTML as submission format. Flags = 0 means

FDF, Flags = 4 means HTML. Default is 0 (FDF).

1. This key is required.

Table 6.29. Keys for /ResetForm
Key Explanation
/Subtype1

1. This key is required.

For resetting form fields always /ResetForm
/Fields (used internally)
/Flags (used internally)
6.5 Destinations and Actions 113

Table 6.30 lists all keys for /ImportData.

Executing menu items. Although the PDF specification “officially” only

supports the menu items “Next Page”, “Previous Page”, “First Page”, and

“Last Page”, actions in a PDF file may execute all menu items of Acrobat

Reader or Exchange. In order to determine the corresponding PDF code and

Table 6.30. Keys for /ImportData
Key Explanation
/Subtype1

1. This key is required.

For importing form data always /ImportData
/F (File)1 Name of the file from which to import the form data

Fig. 6.6.
Acrobat Exchange's
menu functions
114 Chapter 6: pdfmark Primer

the pdfmarks for these undocumented menu items, I manually created ac-

tions for all menu items in Exchange. Unlike the specification, the resulting

PDF file reveals all the required keys.

Note that not all menu items are available in Acrobat Reader. Items

which are only available in Exchange are marked in the table. Another re-

mark relates to subordinate menus: pdfmark cannot predefine the settings

in higher-order menus. For example, although you can launch the print

menu, you cannot define the print menu’s settings (page range, etc.). The

user must adjust these settings manually and confirm the menu before the

print action is launched.

The following code creates a rectangle which, when clicked, closes the

current PDF document:

[/Rect [50 500 150 600]

/Action << /Subtype /Named /N /Close >>

/Subtype /Link

/ANN pdfmark

Table 6.31 lists all keys for activating Acrobat Exchange’s menu items when

used as /N value for the /Subtype /Named. Since the key names correspond

to the menu items and are given in the same order as they appear on

screen, the table doesn’t need any additional explanation for the key

names.

Fig. 6.7.
Acrobat Exchange's menu
functions (continued)
6.5 Destinations and Actions 115

Table 6.31. Keys for /N for executing menu functions with /Named
Acrobat menu Keys for the menu function
File /Open, /Close, /Scan1, /Save1, /SaveAs1, /Optimizer:SaveAsOpt1,

/Print, /PageSetup, /Quit
File Y Import /ImportImage1, /ImportNotes1, /AcroForm:ImportFDF1

File Y Export1 /ExportNotes1, /AcroForm:ExportFDF1

File Y
Document Info

/GeneralInfo, /OpenInfo, /FontsInfo, /SecurityInfo, /Weblink:Base1,
/AutoIndex:DocInfo1

File Y
Preferences

/GeneralPrefs, /NotePrefs, /FullScreenPrefs, /Weblink:Prefs, /Acro-
Search:Preferences (Windows) or /AcroSearch: Prefs (Mac)2,
/Cpt:Capture1

Edit /Undo, /Cut, /Copy, /Paste, /Clear, /SelectAll, /Ole:CopyFile1,3,
/TouchUp: TextAttributes...1, /TouchUp:FitTextToSelection1, /Touch-
Up:ShowLineMarkers1, /TouchUp:ShowCaptureSuspects1,
/TouchUp:FindSuspect1, /Properties

Edit Y Fields1 /AcroForm:Duplicate1, /AcroForm:TabOrder1

Document1 /Cpt:CapturePages1, /AcroForm:Actions1, /CropPages1, /Rotate-
Pages1, /InsertPages1, /ExtractPages1, /ReplacePages1, /Delete-
Pages1, /NewBookmark1, /SetBookmarkDest1, /CreateAllThumbs1,
/DeleteAllThumbs1

View /ActualSize, /FitVisible, /FitWidth, /FitPage, /ZoomTo, /FullScreen,
/FirstPage, /PrevPage, /NextPage, /LastPage, /GoToPage, /GoBack,
/GoForward, /SinglePage, /OneColumn, /TwoColumns, /Article-
Threads, /PageOnly, /ShowBookmarks, /ShowThumbs

Tools /Hand, /ZoomIn, /ZoomOut, /SelectText, /SelectGraphics, /Note1,
/Link1, /Thread1, /AcroForm:Tool1, /Acro_Movie:MoviePlayer1,
/TouchUp:TextTool1, /Find, /FindAgain, /FindNextNote, /Create-
NotesFile1

Tools Y Search /AcroSrch:Query, /AcroSrch:Indexes, /AcroSrch:Results, /AcroSrch:
Assist, /AcroSrch:PrevDoc, /AcroSrch:PrevHit, /AcroSrch:NextHit,
/AcroSrch:NextDoc

Window /ShowHideToolBar, /ShowHideMenuBar, /ShowHideClipboard,
/Cascade, /TileHorizontal, /TileVertical, /CloseAll

Help /HelpUserGuide1, /HelpTutorial1, /HelpExchange1, /HelpScan1,
/HelpCapture1, /HelpPDFWriter1, /HelpDistiller1, /HelpSearch1,
/HelpCatalog1, /HelpReader4, /Weblink:Home

Help (Windows) or
Apple menu (Mac)

/About

1. Only available in Acrobat Exchange.
2. Unfortunately, this entry is platform dependent – even if you create the button in Exchange. This

means that different buttons for the two platforms are required!
3. Only available in Windows or on the Mac with OLE support installed.
4. Only available in Acrobat Reader.
116 Chapter 6: pdfmark Primer

6.6 Additional Tips for Distilling
Distiller parameters. Distiller’s job options can be controlled from within

the PostScript code. This provides a means to specify certain options within

a PostScript file without having to rely on appropriate menu settings. As an

additional plus, this makes it possible to change Distiller settings during

processing of a single file. For example, according to the image contents

one could deploy different compression schemes for certain images (e.g.,

gray level images), while the regular Distiller options apply to all other im-

ages in the file.

Distiller options can be queried and set using the “currentdistiller-

params” and “setdistillerparams” PostScript operators. A complete descrip-

tion of these operators can be found under “Acrobat Distiller Parameters” in

the Acrobat documentation.

Distilling multiple PostScript files to a single PDF. Sometimes it is neces-

sary or convenient to distill multiple PostScript files to a single PDF docu-

ment. For example, the whole document may consist of several chapters in

individual files, or you want to include your own pdfmark file. Since fonts

are embedded only once, combining multiple files decreases the overall file

size. Detailed instructions of how this works can be found in Acrobat Distill-

ers’s Xtras folder.

Automatically creating named destinations. In many cases named desti-

nations are created by application programs which generate the symbolic

name by using the content, e.g. the text in a heading. In order to jump to a

specific page of a PDF document via a Web link, it may be useful to assign a

symbolic name to each page. Named destinations are covered in more de-

tail in Section 8.6.

By making use of a PostScript Level 2 feature, Distiller may be instructed

to automatically create a symbolic name for each page. Phil Smith was the

first to implement this idea. Copy the file namedest.ps from the accompa-

nying CD-ROM to Distiller’s startup directory. This file creates a named des-

tination on each page. The names are “Page1”, “Page2”, etc. These symbolic

names may be used as a fragment identifiers after the “#” character:

http://www.ifconnection.de/~tm/manual.pdf#Page41

Note that the page numbers refer to physical page numbers (starting with

page 1 in the document) and not to whatever page number may be typeset

in the footer or on another location on the page.
6.6 Additional Tips for Distilling 117

	Contents
	6 pdfmark Primer
	6.1 Overview
	6.2 Preliminaries
	6.3 Application-specific Embedding Tricks
	6.4 Basic pdfmark Functions
	6.5 Destinations and Actions
	6.6 Additional Tips for Distilling

